Năng lượng sinh khối


Sinh khối chứa năng lượng hóa học, nguồn năng lượng tử mặt trời tích lũy trong thực vật qua quá trình quang hợp. Sinh khối là các phế phẩm từ nông nghiệp (rơm rạ, bã mía, vỏ, xơ bắp v..v..), phế phẩm lâm nghiệp (lá khô, vụn gỗ v.v…), giấy vụn, mêtan từ các bãi chôn lấp, trạm xử lý nước thải, phân từ các trại chăn nuôi gia súc và gia cầm.
Nhiên liệu sinh khối có thể ở dạng rắn, lỏng, khí… được đốt để phóng thích năng lượng. Sinh khối, đặc biệt là gỗ, than gỗ (charcoal) cung cấp phần năng lượng đáng kể trên thế giới. Ít nhất một nửa dân số thế giới dựa trên nguồn năng lượng chính từ sinh khối. Con người đã sử dụng chúng để sưởi ấm và nấu ăn cách đây hàng ngàn năm. Hiện nay, gỗ vẫn được sử dụng làm nhiên liệu phổ biến ở các nước đang phát triển.
Sinh khối cũng có thể chuyển thành dạng nhiên liệu lỏng như mêtanol, êtanol dùng trong các động cơ đốt trong; hay thành dạng khí sinh học (biogas) ứng dụng cho nhu cầu năng lượng ở quy mô gia đình.


Ich lợi của năng lượng sinh khối
(1) Lợi ích kinh tế
-Phát triển nông thôn là một trong những lợi ích chính của việc phát triển NLSK, tạo thêm công ăn việc làm cho người lao động (sản xuất, thu hoạch…)
-Thúc đẩy sự phát triển công nghiệp năng lượng, công nghiệp sản xuất các thiết bị chuyển hóa năng lượng.v.v..
-Giảm sự phụ thuộc vào dầu, than, đa dạng hóa nguồn cung cấp nhiên liệu.
(2) Lợi ích môi trường :
Đây là một nguồn năng lượng khá hấp dẫn với nhiều ích lợi to lớn cho môi trường .
-NLSK có thể tái sinh được.
-NLSK tận dụng chất thải làm nhiên liệu. Do đó nó vừa làm giảm lượng rác vừa biến chất thải thành sản phẩm hữu ích.
Đốt sinh khối cũng thải ra CO2 nhưng mức S và tro thấp hơn đáng kể so với việc đốt than bitum. Ta cũng có thể cân bằng lượng CO2 thải vào khí quyển nhờ trồng cây xanh hấp thụ chúng. Vì vậy, sinh khối lại được tái tạo thay thế cho sinh khối đã sử dụng nên cuối cùng không làm tăng CO2 trong khí quyển.
Như vậy, phát triển NLSK làm giảm sự thay đổi khí hậu bất lợi, giảm hiện tượng mưa axit, giảm sức ép về bãi chôn lấp v..v…
Tuy nhiên, ta cần lưu ý rằng, nếu tăng cường sử dụng gỗ như một nguồn nhiên liệu sinh khối thì sẽ gây những tác động tiêu cực đến môi trường. Khai thác gỗ dẫn đến phá rừng, xói mòn đất, sa mạc hóa và những hậu quả nghiêm trọng khác. NLSK có nhiều dạng, và những ích lợi kể trên chủ yếu tập trung vào những dạng sinh khối mang tính tái sinh, tận dụng từ phế thải nông lâm nghiệp.

Ethanol từ sinh khối

Ethanol được sản xuất từ sự chuyển hóa tinh bột trong các nguyên liệu sinh khối (bắp, khoai tây, mía..) thành rượu. Quá trình lên men tương tự như quá trình sản xuất nước giải khát chứa cồn. Chú ý, bât lợi chính của các nhiên liệu alcohol (metanol, etanol…) là dù chúng được sản xuất từ sinh khối, khí than…thì 30-40% năng lượng trong nhiên liệu ban đầu đã bị mất đi cho quá trình chuyển hóa alcohol.Các tính toán cho thấy, việc sản xuất alcohol từ hoa màu tiêu tốn nhiều năng lượng cho quá trình trồng trọt, thu hoạch…Vì vậy, nhiên liệu alcohol sản xuất từ hoa màu không kinh tế.
Hiện nay có một quá trình sản xuất etanol sử dụng phần cellulose trong các sinh khối như cây, cỏ và phế thải nông nghiệp. Cellulose là một dạng hydrocacbon khác cũng có thể phân hủy thành các đường đơn. Quá trình này còn tương đối mới và chưa phổ biến rộng rãi trên thị trường nhưng cho thấy tiềm năng khá lớn nếu tận dụng được nguồn nguyên liệu rẻ tiền và dồi dào trên.
Sử dụng etanol, thậm chí với mức hòa trộn thấp (ví dụ E10 : 10% etanol, 90% xăng), cũng có thể đem lại những ích lợi cho môi trường (Etanol dễ phân hủy sinh học hơn xăng).E10sinh ra ít CO, SO2, CO2 hơn xăng. Tuy nhiên E10 sinh ra nhiều chất hữu cơ bay hơi và NOx hơn. Ở mức hòa trộn cao hơn (E85, 15% xăng), hay thậm chí E100 (100% etanol) nhiên liệu cháy với sự giảm gần như tất cả các chất ô nhiễm kể trên. Điều cần lưu ý duy nhất khi sử dụng mức etanol hòa trộn cao (ETBE :ethanol-based oxygenate) là nồng độ các acetaldehydes. Tuy nhiên, điều này có thể khống chế được nhờ bộ lọc khói thải trong xe hơi (catalytic converter).
Ethanol bay hơi kém hơn xăng nên, giống như metanol, nó khó khởi động khi trời lạnh, và vấn đề hiệu suất năng lượng thấp có thể khắc phục nhờ những thiết kế động cơ thích hợp và sự hòa trộn với xăng như trên.

Biogas

Được mệnh danh là “cuộc cách mạng nâu” trong lĩnh vực năng lượng mới (The Brown Revolution), Biogas hiện nay được nghiên cứu và ứng dụng rộng rãi trên thế giới, đặc biệt ở các nước đang phát triển có khí hậu nhiệt đới (Trung Quốc, Ấn Độ, Brazil, Nepal, Kenia, Thái Lan, Việt Nam…) thích hợp cho quá trình lên men kỵ khí các chất thải hữu cơ để tạo khí sinh học.
Biogas cháy với ngọn lửa xanh, không sinh khói, nhiệt độ và nhiệt lượng cao (1 mét khối khí cháy phát ra nhiệt 4700-5900 kcal tùy theo hàm lượng CH4 (mêtan); mà hàm lượng CH4 lại ohụ thuộc vào nguyên liệu ủ).
Biogas sử dụng nguyên liệu đa dạng, thường là tận dụng các chất thải, phế thải, phế phẩm trong nông lâm ngư nghiệp . Quy mô gia đình thường sử dụng phân gia súc, quy mô lớn hơn có thể phát triển sử dụng các loại rác đô thị và rác công nghiệp làm nguyên liệu. (VD : Nhà máy Biogas ở Tilburg (Ấn Độ) khai thác nguyên liệu từ rác thải của các thành phố lớn). Ở Việt Nam ta cũng có những đề tài nghiên cứu sản xuất Biogas từ việc ứng dụng mô hình bể lọc kỵ khí UASB (Upflow Anaerobic Sludge Blanket) để xử lý nước thải của những ngành công nghiệp giàu chất hữu cơ (nước thải nhà máy chế biến thực phẩm, đường, rượu…) trong điều kiện khí hậu nhiệt đới. Sản xuất mêtan sinh học từ chất thải lưu giữ cơ chất trong thời gian dài (ủ nhiều tuần lễ) ở điều kiện kỵ khí nên làm giảm đến 90% ký sinh trùng gây bệnh, khử được mùi khó chịu. Do đó, vấn đề vệ sinh môi trường được cải thiện.
Không chỉ xử lý chất thải hữu cơ, làm sạch môi trường, phát triển Biogas còn cung cấp bã thải là phân bón có giá trị cao cho nông nghiệp, tăng độ phì cho đất.
Trở lại với vai trò năng lượng, việc sản xuất khí mêtan sinh học có thể tự đáp ứng đủ nhu cầu chất đốt, kể cả điện khí hóa ở các vùng nông thôn. Bigas cũng góp phần làm giảm nạn phá rừng ở các nước đang phát triển, giảm sự phụ thuộc vào nhiên liệu hóa thạch.
Các hầm ủ Biogas có thể xây dựng với công suất bất kỳ, vốn đầu tư nhỏ, nguyên liệu sẵn có nên nó khá phù hợp với nền kinh tế các nước đang phát triển. Người ta sử dụng năng lượng Biogas để đun nấu, thắp sáng, chạy máy…Biogas thực sự đem lại cuộc sống văn minh, tiện nghi hơn cho nông thôn.
Với hàng loạt những lợi ích về kinh tế – xã hội và môi trường trên, Biogas hứa hẹn tiềm năng to lớn trong việc góp phần giải quyết vấn đề chất đốt sinh hoạt hiện nay.

Nhà máy điện từ rác-Một chiến lược năng lượng mới

(bài đăng trên báo Người Lao Động-Ghi chép của Thái Nguyễn Bạch Liên)
Kỹ thuật đốt rác phát điện từng có lịch sử nghiên cứu phát triển hơn 30 năm trở lại đây, nhiều nhà máy ở Đức (32% lượng rác được xủ lý bằng đrpđ), Đan Mạch (70%), Bỉ (29%), Pháp (38%).. đã trở thành hình mẫu cho ngành công nghệ “năng lượng và bảo vệ môi trường” này. Ở châu Á, Singapore (100% lượng rác được xử lý bằng đốt rác phát điện) và Nhật Bản (72,8%) là hai nước đi đầu trong kỹ thuật đốt rác phát điện.
Quy trình công nghệ của nhà máy điện rác tương tự như nhà máy nhiệt điện, chỉ khác ở chỗ nhiên liệu không giống nhau và phải trang bị thêm hệ thống xử lý làm sạch khói, khí khá phức tạp.
Tính ưu việt của nhà máy điện rác so với các lò đốt rác thông thường chính là ở chỗ trong khi giảm trọng lượng và thể tích rác nhờ quá trình đốt, nó còn có tác dụng “tài nguyên hóa”, biến rác trở thành nhiên liệu sản xuất năng lượng, “vô hại hóa” rác. Tro bụi từ lò thiêu được phân tuyển bằng từ tính, sau đó trở thành vật liệu phủ mặt đường hoặc lấp lấn biển.

Cảm ứng điện trở - Cảm ứng điện dung


Màn hình cảm ứng nói chung bao gồm khá nhiều loại như cảm ứng điện dung, điện trở, hồng ngoại, sóng âm,… nhưng đối với điện thoại di dộng, smartphone hay máy tính bảng hai công nghệ cảm ứng điện dung và điện trở được sử dụng nhiều hơn cả.
Cảm ứng điện trở
Cảm ứng điện trở là công nghệ cảm ứng dựa trên áp lực của tay, bút cảm ứng hay bất kì vật nhọn nào tác động lên màn hình.

Cấu tạo của loại màn hình cảm ứng này gồm một tấm kính hoặc nhựa acrylic mỏng bao phủ hai lớp tương tác là lớp dẫn xuất điện và lớp cảm biến điện trở. Hai lớp này được phân tách bởi một lớp đệm gồm các điểm và khoảng trống mà mắt thường không thể nhìn thấy được. Trên bề mặt của mỗi lớp tương tác được phủ một hợp chất gọi là ITO (oxit thiếc và Indi), dòng điện với các mức điện thế khác nhau sẽ được truyền qua hai lớp này.

Trong quá trình sử dụng, khi có sự tác động lên màn hình, hai lớp tương tác sẽ “chạm” nhau và mạch điện sẽ được kết nối đồng thời cường độ dòng điện chạy qua mỗi lớp cũng sẽ thay đổi. Lớp phía trên sẽ lấy điện thế từ lớp phía dưới và ngược lại lớp phía dưới sẽ lấy điện thế của lớp phía trên để từ đó bộ điều khiển xác định được tọa độ xy của điểm cảm ứng.

Màn hình cảm ứng điện trở được chia làm ba công nghệ chính là 4,5 và 8 dây, trong đó loại 5 giây được sử dụng nhiều nhất. Bên cạnh đó, người ta còn chế tạo ra loại màn hình có 3 lớp nhằm nâng tuổi thọ của loại màn hình này lên 35 triệu lần chạm thay vì 1 triệu lần chạm như loại 2 lớp truyền thống.

Để có thể nhận biết được tác động của tay người dùng hay bút cảm ứng, các màn hình cảm ứng điện trở cần phải có lớp tương tác mềm phía trên. Điều này khiến nhiều người tỏ ra lo ngại về độ bền của chiếc điện thoại bởi khi thao tác màn hình cảm ứng điện trở đòi hỏi một lực tác động lớn hơn cảm ứng điện dung. Một nhược điểm nữa của loại màn hình này đó là việc ngăn chặn đến 30% lượng ánh sáng từ đèn nền bên dưới do có quá nhiều lớp thành phần bên trong.

Tuy nhiên với đặc điểm là giá thành rẻ và chịu được môi trường khắc nghiệt, các loại màn hình vẫn còn được sử dụng trong khá nhiều thiết bị cảm ứng nơi công cộng. Riêng ở lĩnh vực điện thoại và smartphone, loại màn hình này chỉ phổ biến  trong thời gian trước đây với các sản phẩm như HTC Touch Diamond, Samsung SGH-i900 Omnia, Nokia N97, còn hiện nay hầu như chỉ có ở một số dòng cấp thấp.

Cảm ứng điện dung

Không như màn hình cảm ứng điện trở, màn hình cảm ứng điện dung chỉ sử dụng một lớp tương tác (lưới điện) được bao phủ bởi một lớp dẫn xuất điện làm từ hợp chất ITO tạo nên một ma trận lưới các tụ điện bao phủ toàn bộ màn hình và không có lớp đệm. Với đặc điểm này màn hình cảm ứng điện dung sẽ cho ánh sáng đi qua nhiều hơn, lên đến 90%.

Cách thức hoạt động của loại màn hình này dựa trên sự hút điện của bàn tay khi chúng ta chạm lên màn hình. Nó sẽ làm mất điện ở các tụ điện nơi tiếp xúc kéo theo sự thay đổi giá trị điện dung để từ đó thiết bị điều khiển có thể nhận dạng, xác định được toạ độ xy của điểm cảm ứng. Chính nhờ việc sử dụng thuộc tính điện năng trên cơ thể con người mà loại màn hình này có thể “hiểu” được những thao tác dù là rất nhẹ giúp việc cảm ứng trở nên nhẹ nhàng và dễ dàng hơn các loại màn hình khác. Nhưng cũng chính điều này làm cho việc sử dụng bút hay găng tay không còn phát huy tác dụng.

Với ưu điểm nhanh, nhạy và chính xác cao của mình, màn hình cảm ứng điện dung đang ứng dụng rất nhiều ở các lĩnh vực khác nhau. Đặc biệt, chúng đang là công nghệ cảm ứng dẫn đầu trong thế giới của các thiết bị giải trí cầm tay mà điển hình là smartphone.

Cảm ứng đa điểm

Có thể chúng ta đã khá quen thuộc với các khả năng “làm xiếc” của những chiếc smartphone khiến cho bàn tay chúng ta dường như có “ma lực” với hàng loạt các thao tác như vuốt, kéo, lật, bóp,… Đằng sau những hiệu ứng rất “ảo” ấy chính là công nghệ đa chạm hay còn được gọi là cảm ứng đa điểm. 

Khái niệm về cảm ứng đa chạm không phải là một điều mới mẻ gì trong ngành điện toán và điện tử. Nó đã bắt đầu xuất hiện từ mãi những năm 80 khi các kỹ sư ở đại học Toronto phát triển thành công chiếc màn hình cảm ứng đa điểm đầu tiên. Từ đó, họ bắt đầu chuyển sang nghiên cứu sâu hơn về giao diện cũng như phần mềm và nền móng cho công nghệ mang tính đột phá ấy sau này.

Tuy nhiên, mãi đến ngày chiếc iPhone đầu tiên được ra mắt, cụm từ “đa chạm” mới trở nên quen thuộc thậm chí tạo nên cơn sốt với nhiều người. Với thành công ấy, iPhone nhanh chóng trở thành hiện tượng của năm và cũng trở thành chiếc smartphone làm thay đổi hoàn toàn xu thế người dùng đồng thời mở ra một làn sóng mới trong cuộc đua điện thoại di động đã có phần bão hoà.

Với việc hỗ trợ đa chạm, các nhà sản xuất có nhiều lựa chọn hơn để thiết lập các thao tác trên màn hình cảm ứng. Từ đó, đem đến cho người dùng những trải nghiệm thú vị hơn. Tuy nhiên, không phải chiếc điện thoại cảm ứng nào cũng có các thao tác cảm ứng giống nhau, điều đó phụ thuộc vào hệ điều hành mà thiết vị đó sử dụng. Với cùng một thao tác, có thể trên iOS bạn sẽ được chức năng này nhưng ở Android lại là một chức năng hoàn toàn khác.

Hầu hết các nền tảng lớn hiện nay đã hỗ trợ đến tối đa cùng lúc 5 điểm chạm cho 5 đầu ngón tay. Mặc dù vậy, các thao tác 3,4 hay 5 chạm vẫn còn ít được sử dụng bởi việc đặt quá nhiều ngón cùng lúc lên màn hình sẽ gây khó khăn cho người dùng.

Bên cạnh đó các hãng sản xuất cũng có thể tham gia vào cải thiện khả năng cảm ứng cho những chiếc smartphone của họ nhằm đem đến những trải nghiệm thú vị hơn cho người dùng. Lấy ví dụ điển hình như với Xperia Sola, Sony đã tích hợp một công nghệ gọi là Floating Touch giúp màn hình của chiếc điện thoại này có thể hiểu được cử chỉ của ngón tay mà không cần phải chạm sát lên màn hình, bạn chỉ cần thao tác trong khoảng cách khoảng 2cm là máy đã có thể hiểu được. Tuy nhiên, khả năng này chỉ mới được rất ít ứng dụng hỗ trợ, có lẽ trong tương lai sẽ được phát triển nhiều hơn.

Màn hình cảm ứng điện trở hay điện dung đều hỗ trợ công nghệ đa điểm. Nhưng với lợi thế về độ nhạy, sự chính xác và khả năng kiểm soát nhiều điểm tiếp xúc dễ dàng, màn hình cảm ứng điện dung được sử dụng phổ biến hơn cả. Nguyên lý hoạt động của đa điểm cũng tương tự như đơn điểm chỉ khác nhau ở chỗ đa chạm sẽ xác định nhiều toạ độ cùng lúc trên màn hình. Vì vậy, khả năng đáp ứng theo thời gian thực rất được chú trọng để có thể xác định chính xác thao tác của người dùng.

(theo eChip Mobile)


--------
nguồn: http://www.pcworld.com.vn/articles/cong-nghe/cong-nghe/2009/08/1194367/man-hinh-cam-ung-dang-sau-nhung-cu-cham/
Được sử dụng rộng rãi từ khá lâu trong các máy rút tiền tự động (ATM), máy tính tiền tại cửa hiệu bán lẻ hay siêu thị, hệ thống hướng dẫn lái xe gắn trên ô-tô, ki-ốt thông tin tại các địa điểm công cộng, màn hình trong lĩnh vực y tế hay bảng điều khiển trong sản xuất công nghiệp, vài năm trở lại đây, màn hình cảm ứng (touch screen) trở nên phổ biến trên thiết bị điện tử, máy giải trí cầm tay và điện thoại di động. Đặc biệt, màn hình cảm ứng đã bước sang một trang mới, được nhiều người dùng quan tâm hơn với sự xuất hiện của khái niệm "cảm ứng đa chạm" mà chiếc điện thoại thông minh iPhone tiên phong mang đến cho người dùng những trải nghiệm mới trong tương tác, điều khiển thiết bị cũng như ứng dụng.
Chúng ta sẽ cùng tìm hiểu những khái niệm cơ bản về màn hình cảm ứng, các chủng loại màn hình cảm ứng đang được sử dụng đại trà và nguyên lý hoạt động của chúng.
Định nghĩa
Nói theo kiểu "bình dân" thì màn hình cảm ứng là dạng màn hình thể hiện sự "nhạy cảm" và có những "phản hồi" với các thao tác tiếp xúc, tác động của ngón tay, bút trâm (stylus)... lên bề mặt màn hình. Màn hình cảm ứng có khá nhiều ưu điểm cũng như lợi thế, nhưng ưu điểm quan trọng bậc nhất là cung cấp nhiều cách thức thiết kế, thay đổi giao diện ứng dụng, thiết bị so với một nhóm các nút nhấn vật lý cố định như trước. Với màn hình cảm ứng, "nhạy cảm" đồng nghĩa với khả năng phản hồi những tác động nhận được thông qua việc hiển thị những nội dung đã lập trình sẵn hay kích hoạt một (hay nhóm) tính năng, tác vụ nào đó trên ứng dụng, thiết bị.
Có thể nói, công nghệ màn hình cảm ứng hội đủ tiềm năng để thay thế hầu hết tính năng quan trọng của chuột và bàn phím cũng như các nút nhấn điều khiển. Bạn hãy hình dung, sẽ thật tuyệt vời nếu một hệ thống không trang bị bàn phím "cứng" mà sử dụng bàn phím "mềm", hiển thị ngay lập tức trên màn hình bất cứ khi nào người dùng/hệ thống cần nhập liệu (văn bản, số,...).
Nhiều loại màn hình cảm ứng thậm chí có thể "đọc" chữ viết tay, bản in, ảnh đồ họa và "hiểu" các thao tác chuyển động của ngón tay (với màn hình cảm ứng đa chạm). Nhờ sự linh hoạt này, công nghệ màn hình cảm ứng nói chung và giao diện màn hình cảm ứng nói riêng hiện được sử dụng rộng rãi trong nhiều ứng dụng để tăng tính tương tác giữa con người và máy móc. Trong lĩnh vực sản phẩm CNTT và TT, màn hình cảm ứng chủ yếu xuất hiện trong máy tính bảng (Tablet PC), ĐTDĐ, điện thoại thông minh (smartphone), máy nghe nhạc kỹ thuật số và máy chơi game cầm tay (điển hình là Nintendo DS).
Cấu tạo và nguyên lý
Mọi màn hình cảm ứng đều có nhiệm vụ chính là "số hóa" vị trí tiếp xúc trên màn hình sang giá trị tọa độ X-Y ngay khi "cảm ứng" được tác động. Màn hình cảm ứng gồm 3 thành phần cơ bản: cảm biến cảm ứng, bộ điều khiển (phần cứng) và phần mềm điều khiển. Trong một hệ thống/thiết bị hoàn chỉnh, không chỉ đóng vai trò hiển thị, màn hình cảm ứng còn là thiết bị đầu vào (input device).
Hình 1: Màn hình cảm ứng điện trở
• Cảm biến cảm ứng: Là một tấm (panel) thủy tinh hay nhựa acrylic trong suốt, bề mặt được thiết kế các cảm biến (sensor) để nhận dạng và đáp ứng những tác động từ ngón tay người dùng hay bút trâm. Thông thường, cảm biến cảm ứng được ghép sát với màn hình hiển thị để đạt được độ chính xác tuyệt đối về tọa độ của điểm tiếp xúc. Có nhiều công nghệ được các hãng sản xuất áp dụng để "giăng lưới" và "bẫy" điểm tiếp xúc trên màn hình cảm ứng. Tuy nhiên, về cơ bản, khi có bất kỳ tiếp xúc nào lên màn hình cảm ứng thì giá trị điện áp, điện dung hay điện trở của màn hình (nói chính xác là của cảm biến cảm ứng) sẽ thay đổi; và bằng những thuật toán xây dựng sẵn, toạ độ điểm tiếp xúc sẽ được xác định một cách dễ dàng và nhanh chóng.
• Bộ điều khiển: Là một mạch điện tử dùng để nối cảm biến cảm ứng với thiết bị hay phần mềm điều khiển màn hình cảm ứng. Bộ điều khiển phần cứng có nhiệm vụ chính là "biên dịch" thông tin nhận được từ cảm biến cảm ứng sang dạng tín hiệu mà thiết bị xử lý hiểu được. Sau khi tín hiệu được xử lý xong, thông thưòng kết quả sẽ xuất trực tiếp ra màn hình tương ứng với "lệnh" tác động. Tuy nhiên, trong một số trường hợp kết quả sẽ được trả cho bộ điều khiển để có những phản hồi ngược cho màn hình hiển thị.
• Phần mềm điều khiển: Từng thiết bị cụ thể sẽ có ứng dụng riêng giúp hệ điều hành cũng như các ứng dụng khác biết cách xử lý dữ liệu vừa được số hóa từ cảm biến cảm ứng, sau đó gửi trả dữ liệu đã xử lý cho bộ điều khiển (nếu có). Nếu như có vài bộ điều khiển được tích hợp trong màn hình thì trên nhiều thiết bị, phần mềm điều khiển sẽ được cài hẳn vào firmware.
Phân loại
Các hãng sản xuất thường chia màn hình cảm ứng thành 2 loại: màn hình số hóa chủ động (active digitizer tablet) và màn hình cảm ứng bị động (passive touch screen).
• Màn hình số hóa chủ động: Dù màn hình đồ họa cảm ứng đã được sử dụng trong các hệ thống thiết kế có sự hỗ trợ của máy tính (CAD) và ứng dụng đồ họa từ nhiều năm qua, song công nghệ số hóa chỉ mới được "nhúng" vào màn hình của máy tính bảng trong thời gian gần đây để điều khiển máy tính với sự chuẩn xác như khi sử dụng chuột. Bút trâm dùng cho loại màn hình này cũng kiêm chức năng phát tín hiệu điện từ vào lưới toạ độ X-Y có độ phân giải rất cao - lưới tọa độ này có kích thước bằng đúng kích thước của khung hình hiển thị. Màn hình cảm ứng chủ động chủ yếu xuất hiện trên máy tính bảng, bảng điện tử dùng trong hội họp và giảng dạy, hệ thống CAD/CAM. Nhiều máy tính bảng hiện nay còn hỗ trợ đồng thời công nghệ màn hình cảm ứng chủ động lẫn bị động nhằm cải thiện tính chính xác của tính tương tác giữa bút trâm và màn hình, cũng như mang lại sự đơn giản trong thao tác điều khiển của ngón tay.
• Màn hình cảm ứng bị động: Là loại màn hình thường được dùng cho các thiết bị điện tử, máy ATM, máy tính tiền, ki-ốt thông tin công cộng, máy chơi game cầm tay, thiết bị di động và đặc biệt là nhiều dòng ĐTDĐ, smartphone do cấu tạo đơn giản, dễ sản xuất cũng như giá thành tương đối rẻ.
Hình 2: Màn hình cảm ứng điện dung
Màn hình cảm ứng bị động được phân loại trên cơ sở 4 công nghệ của cảm biến cảm ứng là điện trở (resistive), điện dung (capacitive), hồng ngoại (infrared) và sóng âm thanh bề mặt (surface acoustical wave). Dĩ nhiên, mỗi công nghệ có ưu và khuyết điểm riêng. Trong lĩnh vực ĐTDĐ nói chung và smartphone nói riêng, 2 loại màn hình cảm ứng thường được sử dụng là cảm ứng điện trở và cảm ứng điện dung (nhiều người còn gọi là màn hình cảm ứng nhiệt).
1. Màn hình cảm ứng điện trở (resistive touchscreen): Là loại nhạy cảm với "áp lực" tác động lên bề mặt và có thể được điều khiển bằng bút trâm, ngón tay hay bất kỳ vật nào có đầu nhọn. Màn hình cảm ứng điện trở sử dụng panel kiếng hay nhựa acrylic gồm 2 lớp tương tác mỏng: lớp chất dẫn điện và lớp điện trở - 2 lớp này được cách ly bởi những điểm và khoảng trống mà mắt thường không thể nhìn thấy. Trên bề mặt mỗi lớp tương tác được phủ một hợp chất gọi là ITO (oxít thiếc và Indi), trong khi đó dòng điện với mức điện thế khác nhau sẽ được truyền qua 2 lớp này. Khi có một tác động lên màn hình, 2 lớp tương tác này "chạm" nhau và mạch điện sẽ được nối, cường độ dòng điện chạy qua mỗi lớp cũng sẽ thay đổi. Lớp phía trước sẽ lấy điện thế từ lớp dưới và lớp dưới sẽ lấy điện thế từ lớp trên, qua đó cho phép bộ điều khiển xác định tọa độ X-Y của vị trí tiếp xúc. Người ta thậm chí còn phân loại màn hình cảm ứng điện trở dựa trên số lượng dây điện trở sử dụng, thường là 4/5/8 dây.
Tuy có giá thành sản xuất rẻ nhưng công nghệ màn hình cảm ứng điện trở có nhược điểm là "ngăn" đến 30% lượng ánh sáng phát ra từ màn hình CRT hay LCD bên dưới do có quá nhiều lớp thành phần và vật liệu được phủ lên bề mặt. Ngoài ra, màn hình cảm ứng điện trở cũng đòi hỏi lực tác động mạnh hơn để kích hoạt cảm biến cảm ứng so với màn hình cảm biến điện dung. Bù lại, nhờ sự "cứng cáp" của bề mặt nên màn hình cảm ứng điện trở thường được sử dụng trong các môi trường khắc nghiệt và công cộng như khách sạn, sân bay, bệnh viện... Trong lĩnh vực ĐTDĐ và smartphone, màn hình cảm ứng điện trở được sử dụng phổ biến nhất, ví dụ như HTC Touch Diamond, Samsung SGH-i900 Omnia, Nokia N97.
2. Màn hình cảm ứng điện dung (capacitive touchscreen): Khác với màn hình cảm ứng điện trở, màn hình cảm ứng điện dung chỉ sử dụng một lớp tương tác, đó là panel kiếng được phủ kim loại và điều này trước mắt sẽ cho ánh sáng đi qua nhiều hơn (đến 90%) giúp hình ảnh hiển thị rõ ràng hơn. Lớp kim loại trên bề mặt sẽ tạo ra một lưới các tụ điện cho toàn bộ màn hình. Về nguyên lý, màn hình cảm ứng điện dung dựa trên các thuộc tính điện năng của cơ thể con người để xác định "khi nào và ở đâu" trên màn hình mà bạn tiếp xúc. Nhờ vậy, màn hình cảm ứng dạng này có thể được điều khiển bởi những "cái chạm" rất nhẹ từ ngón tay, tuy nhiên thường thì bạn không thể sử dụng được với bút trâm hay ngón tay có đeo găng. Đó chính là lý do mà nhiều người gọi màn hình dạng này là màn hình cảm ứng nhiệt.
Điện áp sẽ được đặt vào các góc của màn hình. Khi ngón tay chạm vào màn hình, vùng bị tiếp xúc sẽ được nhấn xuống, ngón tay sẽ "hút" một dòng điện và làm thay đổi giá trị dòng điện, tần số cũng được tạo ra từ các mạch điện được đặt ở góc hình (khác nhau tùy hãng sản xuất). Các mạch điện này sẽ tính toán vị trí tọa độ X-Y từ sự thay đổi giá trị điện dung tại điểm tiếp xúc.
Hình 3: Màn hình cảm ứng hồng ngoại và SAW.
Cụ thể hơn, các hãng sản xuất sử dụng một cảm biến gọi là "tụ điện đã được lập trình" đặt giữa 2 lớp kiếng (màn hình hiển thị và panel kiếng cảm ứng). Khi màn hình được tác động, bộ điều khiển sẽ xác định vị trí tọa độ X-Y từ sự thay đổi điện dung trên lưới tụ điện. Màn hình cảm ứng điện dung có độ chính xác và tin cậy cao nên được dùng rộng rãi trong các thiết bị sản xuất và điều khiển công nghiệp, màn hình hiển thị nơi công cộng. Nhờ sự linh hoạt trong nhận diện điểm tiếp xúc, màn hình cảm ứng điện dung cũng cho phép những tác động "2 ngón" như khả năng đa chạm trên iPhone, iPod Touch hay "kéo thả" trên nhiều dòng ĐTDĐ, smartphone hiện nay. Mẫu smartphone mới T-Mobile G1 cũng là thiết bị tiêu biểu sử dụng màn hình cảm ứng điện dung. Ngoài ra, bảng điều khiển GPS, giải trí trên nhiều dòng xe hơi trung và cao cấp cũng thường trang bị màn hình cảm ứng điện dung để tăng tính thuận tiện trong sử dụng.
3. Màn hình cảm ứng hồng ngoại (infrared touchscreen): Có phần giống màn hình cảm ứng điện trở, màn hình cảm ứng hồng ngoại phát ra các tia hồng ngoại theo chiều ngang và dọc trên bề mặt màn hình để tạo ra một lưới ánh sáng. Nguyên lý hoạt động dựa trên công nghệ ngắt tia sáng. Về cơ bản, màn hình cảm ứng hồng ngoại bố trí đầu phát tia hồng ngoại ở một (hay hai) cạnh màn hình, đối diện với đầu phát là cảm biến ánh sáng hay bộ dò ánh sáng.
Khi màn hình được tác động, ở vị trí bút trâm hay bất kỳ vật thể nào "cản" đường truyền của tia hồng ngoại, tín hiệu nhận được ở đầu bộ thu hay cảm biến ánh sáng sẽ bị gián đoạn. Ngay lập tức, bộ dò hay cảm biến ánh sáng sẽ tìm được tọa độ của điểm tiếp xúc trên màn hình.
Bởi vì phương pháp này không sử dụng các lớp tương tác trên bề mặt màn hình nên không cản trở bất kỳ nguồn sáng nào từ màn hình hiển thị bên dưới, giúp hình ảnh mà bạn nhìn thấy thực và sáng rõ. Ngoài ra, màn hình cảm ứng hồng ngoại cũng có thể được phủ thêm một lớp kiếng trong và cứng để tăng tính an toàn.
Màn hình cảm ứng hồng ngoại thường được dùng trong các ki-ốt thông tin công cộng, màn hình trong lĩnh vực y tế, sản xuất công nghiệp, máy bán hàng tự động và những nơi có điều kiện môi trường khắc nghiệt.
Hình 4: Màn hình cảm ứng trong dàn âm thanh xe hơi.
4. Màn hình cảm ứng sóng âm thanh bề mặt (SAW touchscreen): Là dạng màn hình cảm ứng tiên tiến nhất. Công nghệ SAW dựa trên hai bộ thu/phát sóng âm thanh (transducer) trên đồng thời trục X và trục Y của màn hình cảm ứng. Một thành phần quan trọng khác của SAW được đặt trên mặt kiếng màn hình, được gọi là bộ phản hồi (reflector). Nguyên lý hoạt động của màn hình cảm ứng sóng âm cũng tương tự màn hình cảm ứng hồng ngoại, đó là kiểm soát sự ngắt quãng tín hiệu, trong trường hợp này là sóng siêu âm.
Bộ điều khiển của màn hình cảm ứng sẽ gửi tín hiệu điện tử sang bộ phát sóng, và bộ phát sóng sẽ chuyển đổi tín hiệu nhận được sang dạng sóng siêu âm để chuyển tiếp sóng âm này đến bộ phản hồi được đặt ở đầu bên kia panel màn hình. Sau khi bộ phản hồi "khúc xạ" tín hiệu lại cho bộ thu sóng, tín hiệu sẽ được bộ thu gửi trả cho bộ điều khiển. Khi một ngón tay hay bút trâm chạm vào màn hình, chùm sóng đang di chuyển ngang/dọc trên màn hình sẽ bị ngắt quãng và tạo ra một "biến cố chạm" để từ đó bộ điều khiển xác định chính xác vị trí điểm tiếp xúc.
Do sử dụng panel kiếng - không phải các lớp tương tác có thể bị hao mòn như màn hình cảm ứng điện trở hay điện dung - công nghệ SAW cung cấp những thuộc tính quan trọng như độ bền cho bề mặt cảm biến, độ trong suốt và độ phân giải cao cho hình ảnh hiển thị. Điểm trừ cho màn hình cảm ứng sử dụng công nghệ SAW là phải "chạm" bằng ngón tay, bàn tay có đeo găng và bút trâm loại mềm (vật dụng cứng như đầu viết bi không thể sử dụng được), và đặc biệt màn hình cảm ứng dạng này không thể được "bịt kín" tuyệt đối nên có thể dễ bị tác động bởi bụi, bẩn hay nước trong môi trường xung quanh.
Công nghệ SAW được khuyến khích sử dụng trong các máy ATM, công viên, bảo tàng, các ứng dụng tài chính và ngân hàng, ki-ốt thông tin công cộng, hệ thống huấn luyện dựa trên máy tính. Hy vọng, những thông tin này đã mang lại cho bạn những khái niệm cơ bản và khởi đầu cho các bài viết chuyên sâu hơn về màn hình cảm ứng trong tương lai, cũng như mong nhận được những đóng góp, chia sẻ của các bạn.

Metal clad Switchgear LS




Mở Dao Cách Ly 354kV